If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+7q-1=0
a = 2; b = 7; c = -1;
Δ = b2-4ac
Δ = 72-4·2·(-1)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{57}}{2*2}=\frac{-7-\sqrt{57}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{57}}{2*2}=\frac{-7+\sqrt{57}}{4} $
| -2.5x+7=-13 | | 10z+5=23 | | y3=-64/279 | | 2(x+5)^2-3=17 | | (x-12)^2=121 | | 12d+5=3d+32 | | 7.4x+3-9=6=7.4 | | x+14/4=2.5 | | 9x+3=-3(3x-1) | | Y=-1/20x^2+x | | 15=5x-3/6+4x+4/5 | | x-15+x+1=180 | | 4y+91+15y+70=180 | | 0.7=0.6k | | 2x+59+63=180 | | x-7+x+39=180 | | (1/2)^(x-1)=128 | | x-0.80x=122.40 | | 68+x+58=180 | | 77+x+36=180 | | C+3c=7 | | C+3c=21 | | 18+5k=7k | | 4(x=2)=29-3x | | -6+2n=5n+8 | | 9(3y-6)=0/9 | | y+12=2.5 | | 49(14)=x+5(9x+1) | | 4(2z-4)=-8 | | 2(7z-6)=44 | | i/0.54=6.4 | | 20.8+13=c |